ADVANCED ROBOTICS

Course Code	22MEMD2T4	Year	Ι	Semester	II
Course Category	Programme core	Branch	Machine Design Course Type		Theory
Credits	4	L-T-P 4-0-0 Prerequ		Prerequisites	Engineering Mechanics
Continuous Internal Evaluation:	40	Semester End Evaluation:	60	Total Marks:	100

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Apply the knowledge of Mathematics and science to carry out the position and orientation analysis of robot using homogeneous transformations	L3	1
CO2	Develop the mathematical models, analyze, solve forward and inverse kinematics equations of a robot	L3	2
CO3	Develop the mathematical models for dynamic analysis and trajectory planning of a robot	L3	3
CO4	Understand the principles of Block diagram algebra in motion control systems and working principles of various types of sensors and actuators.	L2	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2			1		1				1	3	1
CO 2	3	3	2			1		1				1	3	1
CO 3	3	3	2			1		1				1	3	1
CO 4	3	3	2			1		1				1	3	1

Syllabus						
Unit	Contents	Mapped				
		CO				
1	Fundamentals: Introduction, definition of robot, classification of robots,	CO1				
	robot components, degree of freedom, robot joints, robot coordinates,					
	reference frames, robot characteristics, robot work space, advantages,					
	disadvantages and applications of robots. matrix representation of a point in a					

	space, representation of a vector in space, representation of a frame at the									
	origin of a reference frame, representation of a frame in a reference frame,									
	representation of a rigid body. representation of a pure translation, pure									
	rotation about an axis, representation of combined transformations,									
	transformations relative to the rotating frame, inverse of transformation									
	matrices.									
	Robot Kinematics: Forward and inverse kinematics of robots-forward and	CO2								
	inverse kinematic equations for position, forward and inverse kinematic									
	equations for orientation, forward and inverse kinematic equations for									
	position and orientation, Denavit-Hartenberg (D-H) representation of forward									
	kinematic equations of robots, The inverse kinematic solution of robots									
2	Degeneracy and Dexterity, problems with D-H representation.									
	Differential Motions and Velocities: Introduction, differential relationship,									
	Jacobian, differential motions of a frame-translations, rotation, rotating about									
	a general axis, differential transformations of a frame. Differential changes									
	between frames, differential motions of a robot and its hand frame,									
	calculation of Jacobian, relation between Jacobian and the differential									
	operator, Inverse Jacobian.									
	Dynamic Analysis and Forces: Introduction, Lagrangian mechanics,	CO3								
	Effective moments of inertia, dynamic equations for multi-degree of freedom									
	robots-kinetic energy, potential energy, the Lagrangian, robot's equations of									
3	motion, static force analysis of robots.									
Ũ	Trajectory Planning: Introduction, basics of trajectory planning, joint space									
	trajectory planning-third order polynomial trajectory planning, fifth order									
	polynomial trajectory planning, linear segments with Parabolic blends, linear									
	segments with parabolic blends via points Higher order trajectories	aa 4								
	Motion Control Systems: Basic components and terminology, Block	CO4								
	Diagrams, Laplace Transform, Transfer function, Block diagram algebra,									
	first and second order transfer functions, Pole/Zero Mapping, Steady state									
	error, Root Locus Method, Proportional controls Proportional Plus Integral									
	Controllers, proportional plus derivative controllers, PID Controller									
4	Robol Actuators: characteristics of Actuating systems, comparison of actuating systems, budraulia daviage propagation daviage Electric motors									
	actualing systems, hydraulic devices, pleumatic devices, Electric motors, servomotors, stepper motors. Advantages, Disadvantages & applications of									
	Robot Actuators									
	Robot Actualors. Robot Sensors: Sensor characteristics Position Velocity and Acceleration									
	sensors force and pressure sensors provinity sensors shiff sensors									
	advantages, disadvantages and applications of sensors,									
	Learning Resources									
Text B	Text Book(s):									
1. Intro	1. Introduction to Robotics – Analysis, System, Applications, Saeed B. Niku, 2 nd edition Wiley									
India P	India Pvt. Ltd.									
References										

References: 1. Introduction to Robotics: Mechanics and Control, John J. Craig, 3rd edition, Pearson Education India